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ABSTRACT

The permeability and permittivity tensors

of magnetised ferrite and semiconductor ma-

terials have different dependencies on bias

field, signal frequency and material proper-

ties. Mode charts are presented for composite

planar ring resonator junctions: the semicon-

ductor case has an additional resonance region

and exhibits more symmetrical split frequen-

cies than the ferrite.

INTRODUCTION

Gyrotropic behaviour in magnetically bi-

ased, microwave ferrites is governed by the

Polder permeability tensor[ll. The analytic

procedure of substituting this tensor into

Maxwell’s equation is well understood and de-

sign techniques for phase shift and control

components have been widely disseminated[2~.

Commercially available ferrites can be used

to produce useful non-reciprocal effects up to

around 40 GHz. Above this frequency range

the gyrotropic properties of semiconductor

materials are being investigated for use in non-

reciprocal devices such as planar circulators[~l.

The analysis is based on the Drude model of

electromagnetic propagation through a mag-

netically biased plasma. Before a semicon-

ductor circulator can be designed with con-

fidence the splitting characteristics of the res-

onator junction should be compared with the

predicted mode charts. The split frequency

solutions shown in the mode charts also un-

derpins the bandwidth and loss performance

of the device.

A comparative study of the theoretical

mode charts is presented for the dielectric-

ferrite (DF) and dielectric-semiconductor

(.DS) ring resonators. Compared to homoge-

neous structures this geometry provides addi-

tional variables, flexibility and opportunities

for novel multiport components[51. The study

is undertaken in the frequency/bias-field plane

as this provides a clear illustration of the lossy

resonance regions and the normal mode split-

ting in terms of experimental parameters. So-

lutions in this plane do not reflect the dualities

of the original semiconductor and ferrite ten-

sors. For ferrites the most symmetrical wide-

band split is known to occur at frequencies

below ferromagnetic resonance. In semicon-

ductors excellent symmetrical splitting is pre-

dicted in the bias region that falls between the

two extraordinary-wave resonances.

METHOD OF ANALYSIS

Gyrotropic planar junctions are usually im-

mersed in a static magnetic field perpendicular

to the direction of signal propagation. For an

axially directed (;) field, ferrites yield a ten-

sor permeability and semiconductors a tensor

permittivity both of the form, m
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For ferrites, p, q and r are nonlinear functions ‘ ‘‘ “ o “” - ‘‘ “ -

of signal frequency (~), applied field (HO), ma-

terial magnetization (AZ), axial demagnetizing

factor (Nz) and the gyromagnetic ratio (~) of

the material. The continuous value of Al and

NZ for both saturated and partially magne-

tised ferrites are calculated using a magneti-

zation model enunciated elsewhere [6’71. In the

case of magnetized semiconductors13’41 p, q and

r are nonlinear functions of the relative dielec-

tric constant (c,), the number of electrons per

unit volume (N), the charge of an electron (e)

and the constant effective mass (n2*) of the

mat erial.
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Figure 1: Schematic diagram of planar axisymmet-
ric inhomogeneous dielectric-ferrite and dielectric-
semiconductor resonators.

The composite structures schematically il-

lustrated in figure 1 are the planar D&’ res-

onator and its dual DS configuration asso-

ciated with circulation action. Assuming no

field variation in the axial direction (~ = O),

the modes can be classified as either TE or

Till. The material tensors can be substituted

into Maxwell’s equations and solved using the

boundary conditions of figure 1 to produce

dual characteristic equations (CE) for each

geometry. For ferrites the GE is expressed in

terms of an effective permeability y (p,ff ) given

bY,

~e,f = p’ - q’ (~)

P

_ -y2(Ho-M NZ)2 –f2+2 T2(H0–M N.)M+(~ M)2
—

72(13–M N.)2–f2+72(H.–M N.)M

and the ratlo of the on dlagonai to main diag-

onal tensor permeability y entries?

(1 ylwf

P- = 72(H0 - jb’jV2)2 - j-z+ ~2(Ho - MNJNN

The dual CE for semiconductors is also writ-

,“.., ,

Figure 2: (a) Effective permeability of ferrites and (b)
effective permittivity of semiconductors as a function
of bias field and signal frequency.

ten as a function effective permittivity (c.ff)

and the ratio of tensor permittivity compo-

nents defined as,

(4)

{((Ef2E f 7n”)2-(e #o IIo)’ ) }–2 N C2 m* +{N e2}2
.

<O .f2{c((f rn*)2-(e LAOHO)2)– N e2 nz*}
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Figure 4: Mode charts for a DS (InSb) planar res-
onator, biased between the two extraordinary-wave

resonances. (iV=1018 ~, ~=0.014, e.=16, ‘1’emp =

77K, RO,,+=lmm, R; fl=0.2rnm, t= O.lmm)
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Fimre 5: Mode charts for the same DS OnSb) res-
.7

onator, biased above both the extraordinary-wave res-
onances.



by the 11-ude model. These regions are asso-

ciated with coupling to the so called extraor-

dinary waves and the main bias region falls

between these two resonances. For both mate-

rials, damping losses occur in all the resonance

regions.

The resonant frequencies of the geome-

tries in figure 1 can be presented as a con-

tinuous function of applied field. Figure 3

displays the mode chart of a planar DF’

(YIG G113) composite resonator, with the

shaded area representing the lossy ferrimag-

net ic resonance region. It is evident from

this figure that operation below resonance ex-

hibits more symmetrical wideband character-

istics than the corresponding above resonance

region. The applied-field/frequency response

of a DS (lnSb) structure is illustrated in fig-

ures 4 ancl 5. The normal modes depicted

in region 1 of figure 4 predicts excellent sym-

metrical splitting characteristics suitable for

planar circulator and tunable filter operation.

Figure ,5 displays a subsidiary operating re-

gion (l?eg.2) at frequencies above both the

extraordinary-wave resonances.

Table 1: Effect on the modal behavior with changing

dimensions and material properties

Increaang Frequency Onset

value of Sphtt,ng Frequency
1

YIG Gl13-AIr Composite Resonator

Above Below TM&rim O modes

Resonance R.., Above Res BelcI. R,.

R 01, t reduce, reduces

R tn reduces reduce.

ci- reduces reduce,

cd increases reduce.

lnSb-A]r Compoate Resonator

Regton 1 Regzon 2 TE+nmO modes

(fig 4) (fig 5) Reg 1 R.g 2

Ra,, t ,Ilcrea. e. rcducc, reduce,

R ,% reduces red”’.,

~, reduces reduces

N ,“creases reduces Increases

m * reduce. red “C.,

~d ,n creases reduces Increases

CONCLUSIONS

Figures 3, 4 and 5 provide illustrative ex-

amples of normal mode splitting in composite

ferrite and semiconductor axisymmetric pla-

nar resonators. Table 1 summarises the effect

on these modal behavior of changing geomet-

rical and material parameters of the device.
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