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ABSTRACT

The permeability and permittivity tensors
of magnetised ferrite and semiconductor ma-
terials have different dependencies on bias
field, signal frequency and material proper-
ties. Mode charts are presented for composite
planar ring resonator junctions: the semicon-
ductor case has an additional resonance region
and exhibits more symmetrical split frequen-
cies than the ferrite.

INTRODUCTION

Gyrotropic behaviour in magnetically bi-
ased, microwave ferrites is governed by the
Polder permeability tensorl!l. The analytic
procedure of substituting this tensor into
Maxwell’s equation is well understood and de-
sign techniques for phase shift and control
components have been widely disseminated!?.
Commercially available ferrites can be used
to produce useful non-reciprocal effects up to
around 40 GHz. Above this frequency range
the gyrotropic properties of semiconductor
materials are being investigated for use in non-
reciprocal devices such as planar circulatorstl.
The analysis is based on the Drude model of
electromagnetic propagation through a mag-
netically biased plasma. Before a semicon-
ductor circulator can be designed with con-
fidence the splitting characteristics of the res-
onator junction should be compared with the
predicted mode charts. The split frequency
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solutions shown in the mode charts also un-
derpins the bandwidth and loss performance
of the device.

A comparative study of the theoretical
mode charts is presented for the dielectric-
ferrite (DF') and dielectric-semiconductor
(DS) ring resonators. Compared to homoge-
neous structures this geometry provides addi-
tional variables, flexibility and opportunities
for novel multiport componentsl®l. The study
is undertaken in the frequency/bias-field plane
as this provides a clear illustration of the lossy
resonance regions and the normal mode split-
ting in terms of experimental parameters. So-
lutions in this plane do not reflect the dualities
of the original semiconductor and ferrite ten-
sors. For ferrites the most symmetrical wide-
band split is known to occur at frequencies
below ferrimagnetic resonance. In semicon-
ductors excellent symmetrical sphitting is pre-
dicted in the bias region that falls between the
two extraordinary-wave resonances.

METHOD OF ANALYSIS

Gyrotropic planar junctions are usually im-
mersed in a static magnetic field perpendicular
to the direction of signal propagation. For an
axially directed (2) field, ferrites yield a ten-
sor permeability and semiconductors a tensor
permittivity both of the form,

p —yqg 0
Jjg p 0 (1)
0 0

1996 IEEE MTT-S Digest

™H
3F



For ferrites, p, ¢ and r are nonlinear functions
of signal frequency (f), applied field (H,), ma-
terial magnetization (M), axial demagnetizing
factor (N,) and the gyromagnetic ratio (y) of
the material. The continuous value of M and
N, for both saturated and partially magne-
tised ferrites are calculated using a magneti-
zation model enunciated elsewherel®7). In the
case of magnetized semiconductorst® p, ¢ and
r are nonlinear functions of the relative dielec-
tric constant (¢, ), the number of electrons per
unit volume (), the charge of an electron (¢)
and the constant effective mass (m*) of the
material.

Figure 1: Schematic diagram of planar axisymmet-
ric inhomogeneous dielectric-ferrite and dielectric-
semiconductor resonators.

The composite structures schematically il-
lustrated in figure 1 are the planar DI res-
onator and its dual DS configuration asso-
ciated with circulation action. Assuming no
field variation in the axial direction (£ = 0),
the modes can be classified as either T'E or
TM. The material tensors can be substituted
into Maxwell’s equations and solved using the
boundary conditions of figure 1 to produce
dual characteristic equations (C'E) for each
geometry. For ferrites the C'F is expressed in
terms of an effective permeability (p.s5) given

by,
2 2
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and the ratio of the off diagonal to main diag-
onal tensor permeability entries,

q v M f

¥y B 72(Ho - ]VINZ)2 - f2 +72(H0 - MNZ)M(g)

The dual CE for semiconductors is also writ-
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Figure 2: (a) Effective permeability of ferrites and (b)
effective permittivity of semiconductors as a function
of bias field and signal frequency.

ten as a function effective permittivity (e.ss)
and the ratio of tensor permittivity compo-
nents defined as,

2 2

P —q
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q _ N 163' po Ho (5)
P {e((fm) = (e o Ho)?) = N 2 mr}

where ¢ = ¢, ¢. It is clear from equa-
tions (2) and (3) against (4) and (5) that
the frequency/bias-field solutions do not re-
flect the original duality suggested by figure 1
and the characteristic equations expressed in
terms of the tensor entries of equation 1.

DISCUSSIONS AND RESULTS

Figure 2 illustrates the effective permeabil-
ity (2) of ferrites and effective permittivity (4)
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Figure 3: Applied field/frequency solution of a com-
posite DF (YIG G113) resonator over the three re-

gions of magnetization.(M,=140 £4 ¢, =159, ¢;=1,

m
Rouy=5 mm, Rjp=1 mm, t=1 mm)

of semiconductors as a function of the exper-
imental variables: bias field and signal fre-
quency. Microwave ferrite devices can be bi-
ased to operate either above or below the sin-
gle ferrimagnetic resonance. In semiconduc-
tors there are two resonance regions predicted
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Figure 4: Mode charts for a DS (InSb) planar res-

onator, biased between the two extraordinary-wave
resonances.(N=10'® ;ll—s—, 7-=(0.014, ¢,=16, Temp =

71K, Roy=1mm. R;»=0.2mm. {=0.1lmm)
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Figure 5: Mode charts for the same DS (InSb) res-
onator, blased above both the extraordinary-wave res-
onances.



by the Drude model. These regions are asso-
ciated with coupling to the so called extraor-
dinary waves and the main bias region falls
between these two resonances. For both mate-
rials, damping losses occur in all the resonance
regions.

The resonant frequencies of the geome-
tries in figure 1 can be presented as a con-
tinuous function of applied field. Figure 3
displays the mode chart of a planar DF
(YIG G113) composite resonator, with the
shaded area representing the lossy ferrimag-
netic resonance region. It is evident from
this figure that operation below resonance ex-
hibits more symmetrical wideband character-
istics than the corresponding above resonance
region. The applied-field /frequency response
of a DS (InSb) structure is illustrated in fig-
ures 4 and 5. The normal modes depicted
in region 1 of figure 4 predicts excellent sym-
metrical splitting characteristics suitable for
planar circulator and tunable filter operation.
Figure 5 displays a subsidiary operating re-
gion (Reg.2) at frequencies above both the
extraordinary-wave resonances.

Table 1: Effect on the modal behavior with changing
dimensions and material properties.

Increasing Frequency Onset

value of Sphtting Frequency

YIG G113-Air Composite Resonator

Above Below TM4yLpmo modes
Resonance Res. Above Res Below Res
Roye reduces reduces
R,, reduces reduces
€r reduces reduces
M mncreases reduces J no change
€4 increases reduces

InSb-Air Composite Resonator

Regron 1 Regron 2 TE 4 nmo modes
(fig 4) (fig 5) Reg1 | Regz

Route increases I reduces reduces

R,, reduces reduces

ep reduces reduces

N mcreases reduces [ 1ncreases
m* reduce- reduces

Cd mcereases reduces Llncreases

CONCLUSIONS

Figures 3, 4 and 5 provide illustrative ex-
amples of normal mode splitting in composite
ferrite and semiconductor axisymmetric pla-
nar resonators. Table 1 summarises the effect
on these modal behavior of changing geomet-
rical and material parameters of the device.
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